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behaviors features correlations prediction
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we extend studentlife
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class attendance, studying and partying
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capturing the dynamics of behavior



how to represent the data?
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use mean to measure level

mean = 3.15



behavior term slope
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behavior term slope
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pre/post midterm slope
pre-slope = 2.23 post-slope = -0.86

midterm
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breakpoint — when students change 
their behavior to adapt
student 1

student 2

different breakpoint



• iteratively select every 
week as breakpoint 

• use one or two linear 
regressions to fit the 
data before and after 
the breakpoint
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breakpoint — how to compute
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• iteratively select every 
week as breakpoint 

• use one or two linear 
regressions to fit the 
data before and after 
the breakpoint

breakpoint — how to compute
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we use Bayes Information Criterion to select the breakpoint

MSE1 MSE5 MSE6
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which of the 193 features relate to performance?



studying, partying and GPA
study duration

study focus - activity

study focus - audio

party duration

R value
-0.45 -0.3 -0.15 0 0.15 0.3 0.45 0.6



studying, partying changes and GPA

pre-midterm class attendance

pre-midterm study duration

after-midterm conversation duration

R value
0 0.113 0.225 0.338 0.45
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what models can predict GPA?



studying

partying

activity

conversation

stress / positive 
affect

mental health

personality

+ GPA

…
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use lasso to regularize training

leave-one-out cross validation



selected features
three sensor-based behavioral features 

• conversation duration night breakpoint 
• conversation duration evening term-slope 
• study duration 

three EMA features 
• positive affect 
• positive affect post-slope 
• stress term-slope 

one personality 
• conscientiousness



prediction performance
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goodness of fit: 
• R2 = 0.559 
• r = 0.81, p < 0.01
our model can 
distinguish high and 
lower performers







Thanks, I’m done


