SmartGPA: How Smartphones Can Assess and Predict Academic Performance of College Students

Rui Wang, Peilin Hao, Xia Zhou, Andrew Campbell (Dartmouth College) Gabriella Harari (University of Texas at Austin)

performance

Blackboard

SAT

StudentLife

StudentLife is the first study that uses passive and automatic sensing data from the phones of a class of 48 Dartmout term to assess their mental health (e.g., depression, loneliness, stress), academic performance (grades across all the cumulative GPA) and behavioral trends (e.g., how stress, sleep, visits to the gym, etc. change in response to college assignments, midterms, finals -- as the term progresses).

Much of the stress and strain of student life remains hidden. In reality faculty, student deans, clinicians know little about outside of the classroom. Students might know about their own circumstances and patterns but know little about class student life we develop the first of a kind StudentLife smartphone app and sensing system to automatically infer human students do better than others? Under similar conditions, why do some individuals excel while others fail? Why do students

we extend studentlife

class attendance, studying and partying

semantics of location

Chinese Language House

WFRD

Choate House

ainst

_ittle Hall

North Hall

El Hajj Malik El Shabazz

Brown Hall

Webster Cottage

Carson Hall

Sherman Library

Baker-Berry Library

Haldeman Center

Dartmouth Beta

DartmouthCollege: Rockefeller Center

Silsby Hall

Butterfield Hall

el Hall

Russell Sage

Moore Psychology Bldg

Byrne II Hall

Native American House

Raven House

Berry

Parker, House

Dartmouth College Sudikoff Lab

-

he Church of Christ at Dartmouth College

Fairchild Hall

study areas

activity

sound

studying

attending classes and studying

week

party places

sound

activity co-location

partying

partying trends across the term

party duration

study duration

behaviors features

88

83

22

88

88.88

8.88.88

8888

88

capturing the dynamics of behavior

week

behavior term slope

term slope = 0.29

week

behavior term slope

term slope = 0.29

9

midterm

6 8

week

5

pre/post midterm slope

post-slope = -0.86midterm

6 5 8 9 7

week

breakpoint — when students change their behavior to adapt

week

breakpoint — how to compute

- iteratively select every week as breakpoint
- use one or two linear regressions to fit the data before and after the breakpoint

breakpoint — how to compute

9

 use one or two linear regressions to fit the data before and after the breakpoint

breakpoint — how to compute

9

use one or two linear regressions to fit the data before and after the breakpoint

breakpoint — how to compute

MSE_6

we use Bayes Information Criterion to select the breakpoint

studying, partying and GPA

study focus - activity

study focus - audio

party duration

-0.45

R value

studying, partying changes and GPA

pre-midterm class attendance

pre-midterm study duration

after-midterm conversation duration

0

what models can predict GPA?

use lasso to regularize training

leave-one-out cross validation

se ectec features

three sensor-based behavioral features

- conversation duration night breakpoint
- conversation duration evening term-slope
- study duration

three EMA features

- positive affect
- positive affect post-slope
- stress term-slope

one personality

conscientiousness

absolute error

prediction performance

goodness of fit: • $R^2 = 0.559$ • r = 0.81, p < 0.01

our model can distinguish high and **lower performers**

MAE = 0.179

0.4 0.5

Thanks, I'm done